Sarianekabaca
  • Home
Beranda » Chemistry » Heteroaromatic Compounds

Heteroaromatic Compounds

Introduction

The conept of aromaticity extends beyond simple hydrocarbons such as benzene, naphthalene, and anthracene. We have seen that MO theory treats the pi system of aromatic molecules independently of the sigma-bonded framework. This means that the identity of the the atoms that comprise that framework is not important. They may be carbons, but they might also be nitrogen or oxygen or sulfur, or other, less common, atoms. In this topic we will take a brief look at aromatic molecules where the sigma-bonded framework includes nitrogen, oxygen, and sulfur atoms. We will consider two situations, electron rich systems and electron poor systems.

Electron Rich Systems

In benzene there are 6 pi electrons distributed over a sigma bonded framework of 6 carbon atoms. From this perspective there is one pi electron per nucleus. In electron rich systems that ratio is larger. Consider the heterocyclic compounds shown in Figure 1.

Figure 1

These Cups All Runneth Over

All of the compounds in the figure are considered aromatic. In each case, the lone pair of electrons shown in red on the heteroatom constitutes part of the pi system as indicated in the orbital drawings of furan, pyrrole, and imidazole. Each of the molecules in this figure has a pi system that contains 6 electrons. In furan those 6 pi electrons are attracted to four carbon nuclei and one oxygen nucleus; a total of 32 protons. The electron/proton ratio is 6:32 = 0.1875 electrons/proton. Since this is higher than the 0.167 electrons/proton in benzene, furan is considered electron rich. Another way to look at this is to ask the hypothetical question "What would the electron density be in an "imaginary benzene molecule" if the electron/proton ratio were 0.1875 electrons/proton rather than 0.167 electrons/proton?" Since a carbon atom has 6 protons, the electron/proton ratio of 0.1875 for the heterocyclic system is equivalent to 6 x 0.1875 = 1.125 electrons per nucleus in such an "imaginary benzene".

In the case of pyrrole the electron/proton ratio is 6/31 = 0.1935. If the electron density on each carbon atom in benzene were 0.1935 electrons/proton, then there would be 1.161 electrons per nucleus for each carbon nucleus in this "imaginary benzene molecule".


Exercise 1 Which compound would you expect to react fastest with an electrophilic reagent such as Br2/FeBr3, benzene, furan, or pyrrole?

Exercise 2 Which compound would you expect to react faster with an electrophilic reagent such as Br2/FeBr3, pyrrole or imidazole?

Exercise 3 Which compound would you expect to react slowest with an electrophilic reagent such as Br2/FeBr3, pyrrole, oxazole, or imidazole?


Many heterocyclic molecules are play important roles in biological systems. Pyrrole, for example, is a building block for porphyrins, macrocyclic ring systems found in hemoglobin and chlorophyll a. The heme portion of hemoglobin, which is a protein, is shown in Figure 2 where the four pyrrole rings are highlighted in blue.

Figure 2

Hey, Look, It's a Bloody Heme!

Imidazole is a substituent on the side chain of the amino acid histidine. It is found at the active site of many enzymes, where it is involved in proton transfer reactions. Imidazole is often thought of as the biological equivalent of hydroxide ion.

Electron Poor Systems

If electron rich systems are those in which there are more than one electron/nucleus, then electron poor systems are those in which there are less than 1. Figure 3 shows three common examples.

Figure 3

The 3 Ps

The electron/proton ratio in pyridine is 6:37 = 1:6.17 which is equivalent to 0.973 electrons/nucleus. It is electron poor. While molecules like pyridine and pyrimidine do undergo electrophilic aromatic substitution reactions, they require much harsher conditions than their electron rich counterparts.

Figure 4 compares the reactivities of benzene, pyrrole, and pyridine towards nitric acid. Note how seemingly small changes in the electron/nucleus value- 0.973 to 1.000 to 1.161- result in very large changes in reactivity.

Figure 4

Different Strokes for Different Folks

Nucleosides

Finally, we will take a brief look at an important class of heterocyclic aromatic compounds known as nucleosides. These molecules are important because they are components of the nucleic acids RNA and DNA. There are 5 different nucleosides that occur in RNA and DNA; adenine, guanine, cytosine, thymine, and uracil. Structures of these compounds are shown in Figure 5.

Figure 5

Meet the Nucelosides

Adenine and guanine are purines. Cytosine, uracil, and thymine are pyrimidines. Adenine, guanine, and cytosine occur in both RNA and DNA. Thymine occurs only in DNA, while uracil is found in RNA. Note that with the exception of adenine, all of the nucleosides are shown as keto tautomers of their enol forms which are redrawn in Figure 6.

Figure 6

Meet the Nucleosides (in disguise)

In their book The Double Helix, Watson and Crick, who first described the double helical structure of DNA, confess that they were unaware of the possibility of keto-enol tautomerization and that their ignorance of this phenomenon delayed their insight into the structure of DNA for a significant length of time.

Tweet

Artikel keren lainnya:

Ditulis oleh Unknown pada tanggal Sunday, October 11, 2009
Newer Post
Older Post
Home

Popular Post


Kata kunci UNBANNED CHAR PB CONF
Sangat di sayangkan bagi seorang Tropper dengan char Unggulannya yang sudah di banned tapi .....
 
Kata kunci CHEAT PB GARENA TERBARU LULUS UJI
Cheat Terbaru Grid Super Glass PB Garena Lulus Uji Patch, tembus meskipun billing dari PB Garena .....
 
sampling Berbagai Sampling Keyboard
Free download Sampling, Penggunaan sampling dalam dunia Organ Tunggal (OT) ternyata cukup .......
 
Itutu KESAT VAGINA
Berikut adalah cara agar vagina anda tetap kesat meskipun sudah berhubungan beberapa kali ......
 
x-ray photoshop Cara X-Ray Photoshop
Untuk membuat efek XRay, seolah-olah kita dapat melihat bagian dalam tubuh seperti tidak berpakaian..
 
Kata kunci Kata kunci Favorite Blog Adsense
Pengguna Adsense, pendapatan masih rendah, Kata kunci ini yang akan membuat blog mu meroket, mulai dari sekarang terapkan .....

Blog Archive

  • February 2018 (2)
  • January 2018 (2)
  • December 2017 (12)
  • November 2017 (6)
  • October 2017 (64)
  • September 2017 (9)
  • August 2017 (32)
  • July 2017 (11)
  • June 2017 (363)
  • May 2017 (2)
  • April 2017 (61)
  • March 2017 (390)
  • February 2017 (84)
  • January 2017 (6)
  • December 2016 (9)
  • November 2016 (7)
  • October 2016 (11)
  • September 2016 (22)
  • September 2015 (4)
  • April 2015 (7)
  • March 2015 (10)
  • February 2015 (19)
  • January 2015 (13)
  • December 2014 (7)
  • November 2014 (21)
  • October 2014 (10)
  • January 2014 (4)
  • February 2010 (24)
  • January 2010 (97)
  • December 2009 (29)
  • October 2009 (150)
  • June 2009 (55)
  • May 2009 (34)
  • April 2009 (45)
  • March 2009 (16)

Related

  • Download Film Sanam Teri Kasam (2016) Subtitle Indonesia
    Download & Streaming Sanam Teri Kasam (2016) Subtitle Indonesia Terbaru Gratis MP4  MKV  480p 720p & 1080 HD BluRay, DVDScr, DVDRip,...
  • Download Film The Raid Redemption (2012) Bluray 720p Subtitle Indonesia
    Download The Raid Redemption (2012) Bluray 720p Indonesia        STREAMING MOVIE Poster Info  The Raid Redemption (2012) Genre Action,Thrill...
  • Download Film 8 Hari Menaklukan Cowo (2016) Full Movie
    Download & Streaming 8 Hari Menaklukan Cowo (2016) Full Movie Terbaru Gratis MP4  MKV  480p 720p & 1080 HD BluRay, DVDScr, DVDRip, W...
  • Download Film Hate Story 3 2015 DVDRip 720p Subtitle Indonesia
    Download & Streaming  Hate Story 3 2015 DVDRip 720p Subtitle Indonesia  Terbaru Gratis MP4  MKV  480p 720p & 1080 HD BluRay, DVDScr,...
Copyright © 2014 Sarianekabaca - Powered by Blogger
Template by Sarianekabaca - Versi Seluler